02/11/2016 | Coloquios en el CIBION
Thomas Klar – Martes 8 de Noviembre 16:00 hs
Institute of Applied Physics, Johannes Kepler University Linz, Austria

Plasmonic Nanoparticles and Fluorescence

Metallic nanoparticles are apt to modify the luminescence yield from organic molecules in their immediate nano-environment. In case of photoluminescence, they influence both the nonradiative and the radiative rate [1]. The latter can be tuned that much that even Purcell-like changes of the fluorescence spectra can be observed [2]. Thinking one step further, from the Purcell effect, which influences spontaneous transitions, to stimulated transitions, one may end up with nanoscale lasers or even the “spaser”, which however faces fundamental limitations form the materials point of view [3]. Star shaped plasmonic nanoparticles have been shown to improve the yield of electroluminescence in organic light emitting diodes [4].
Plasmons can also substantially improve the quantum efficiency of the intrinsic luminescence from gold stemming from the recombination of d-band holes with sp electrons [5]. Recently, we have observed an anticorrelation of the intensity of the d-band luminescence with the intensity of the hot spots between two gold nanoparticles [6] and we have found that gold nanosponges, while showing highly polarized scattering spectra [7], produce much less polarized luminescence spectra.

Referencias

1. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 2002, 89 (20), 203002.

2. Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J., Shaping Emission Spectra of Fluorescent Molecules with Single Plasmonic Nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

3. Arnold, N.; Hrelescu, C.; Klar, T. A., Universal Minimal Spaser Threshold within Electrodynamic Framework: Shape, Size and Modes. Annalen der Physik 2016, 528 (3-4), 295.

4. Munkhbat, B.; Pöhl, H.; Denk, P.; Klar, T. A.; Scharber, M. C.; Hrelescu, C., Performance boost of organic light emitting diodes with plasmonic nanostars. Adv. Opt. Mat. 2016, 4 (5), 772.

5. Dulkeith, E.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; von Plessen, G.; Gittins, D. I.; Mayya, K. S.; Caruso, F., Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 2004, 70, 205424.

6. Sivun, D.; Vidal, C.; Munkhbat, B.; Arnold, N.; Klar, T. A.; Hrelescu, C., Anticorrelation of photoluminescence from gold nanoparticle dimers with hot-spot intensity. Nano Lett. 2016, DOI: 10.1021/acs.nanolett.6b03562.

7. Vidal, C.; Wang, D.; Schaaf, P.; Hrelescu, C.; Klar, T. A., Optical Plasmons of Individual Gold Nanosponges. ACS Photonics 2015, 2, 1436-1442.

Imágenes
cerrar
Últimas entradas
19/10/2018
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP) - CONICET.
16/10/2018
Grupo de Nanofisica aplicada-CIBION
05/10/2018
UMYMFOR - FCEN - UBA
28/09/2018
Laboratorio de Química Medicinal-CIBION y Laboratorio de virología molecular-IIB UNSAM
21/09/2018
Laboratorio de Fotónica, Facultad de Ingeniería, UBA